Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Measurement: Journal of the International Measurement Confederation ; 206, 2023.
Article in English | Scopus | ID: covidwho-2245420

ABSTRACT

In recent years, the significance of biosensors has increased rapidly due to the growing demand for rapid detection of various biomarkers with high selectivity and sensitivity. Among different biosensors, Graphene Field Effect Transistor (Gr-FET) based biosensors has emerged as a promising device and exhibited wide range of application prospects. Gr-FET biosensors are ideal for ultra-sensitive immunological diagnosis applications as it can sense surrounding changes on their surface with low noise. Recently Gr-FET based biosensors have gained profound research interest among scientific community because of its ability in detection of SARS-CoV-2 (corona virus-2). This review article highlights the sensing performance and characteristics of different Gr-FET biosensors like DNA sensor, RNA sensor, glucose sensor, lactose sensor, protein sensor, pH sensor, various bacteria and virus detecting sensors etc.This article also critically reviews the recent progress in Gr-FET based SARS- CoV-2 covid-19 virus detection bio-sensors. © 2022 Elsevier Ltd

2.
Angewandte Chemie ; 134(32), 2022.
Article in English | ProQuest Central | ID: covidwho-1981566

ABSTRACT

The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR‐associated (Cas) systems have recently received notable attention for their applications in nucleic acid detection. Despite many attempts, the majority of current CRISPR‐based biosensors in infectious respiratory disease diagnostic applications still require target preamplifications. This study reports a new biosensor for amplification‐free nucleic acid detection via harnessing the trans‐cleavage mechanism of Cas13a and ultrasensitive graphene field‐effect transistors (gFETs). CRISPR Cas13a‐gFET achieves the detection of SARS‐CoV‐2 and respiratory syncytial virus (RSV) genome down to 1 attomolar without target preamplifications. Additionally, we validate the detection performance using clinical SARS‐CoV‐2 samples, including those with low viral loads (Ct value >30). Overall, these findings establish our CRISPR Cas13a‐gFET among the most sensitive amplification‐free nucleic acid diagnostic platforms to date.

3.
Angewandte Chemie ; 134(32), 2022.
Article in English | ProQuest Central | ID: covidwho-1971219

ABSTRACT

Der Nachweis von Nukleinsäuren spielt eine wichtige Rolle in der medizinischen Diagnostik, der Umweltüberwachung und der Lebensmittelsicherheit. In ihrem Forschungsartikel (e202203826) entwickelten Xue Gao, Yi Zhang und Mitarbeiter einen neuen Biosensor für den amplifikationsfreien Nukleinsäurenachweis, indem sie den trans‐Spaltungsmechanismus von Cas13a und ultrasensitive Graphen‐Feldeffekttransistoren (gFETs) nutzten. Die Abbildung zeigt die Cas13a‐vermittelte RNA‐trans‐Spaltung auf der gFET‐Oberfläche für die Sensorsignalübertragung.

SELECTION OF CITATIONS
SEARCH DETAIL